Information Builders 11.02.2019, 11:14 Uhr

5 Datenmanagement-Trends in Unternehmen

Da Datenmanagement und Analytik enger integriert werden, können Unternehmen Daten in diesem Jahr besser nutzen, so Information Builders. Zudem unterstützen BI-Technologien bald auch die Konvergenz von Blockchain- und Big-Data-Zugriffen und ermöglichen damit vollständige Transparenz bei innovativen Analytik-Anwendungen.

(Quelle: informationbuilders.de )
Information Builders, Anbieter von Business-Intelligence (BI)-, Analytics-, Datenintegritäts- und Datenqualitätslösungen, nennt die fünf wichtigsten Trends für die kommenden zwölf Monate.
1. Umfassende unternehmensweite Analytik. Die Nachfrage aus den Fachabteilungen nach einem effizienteren Datenmanagement und einer Data Value Chain, die entscheidungsrelevante Informationen bereitstellt, steigt weiter rasant an. Gleichzeitig werden hohe Datenqualität, Stammdatenmanagement und andere datenzentrierte Funktionen immer wichtiger. Erfolgreiche Unternehmen kombinieren all diese Aktivitäten und Komponenten in einer abteilungsübergreifenden und unternehmensweit skalierbaren Analytics-Strategie.
2. Es stehen immer mehr Daten für Analysen bereit. Eine höhere Effizienz in der Fertigung, bei Connected Vehicles und Smart Cities sind einige der typischen IoT-Anwendungsszenarien, die sich immer stärker in den Unternehmen und in vielen Lebensbereichen verbreiten. Darüber hinaus entstehen mit dem zunehmenden Einsatz von intelligenten Wearables, beispielsweise im Gesundheitswesen oder für den persönlichen Gebrauch, umfangreiche Ökosysteme, die Verbrauchern, aber auch spezialisierten Dienstleistungsunternehmen wichtige Erkenntnisse über Zuverlässigkeit, Sicherheit und Gesundheit liefern.
3. Konvergenz von Technologien. KI, Predictive Analytics, IoT und Blockchain sind Technologien, die eine verlässliche Datenerfassung und zielgerichtete Auswertung erfordern. Durch die zunehmende Konvergenz dieser Technologien entstehen neue Möglichkeiten. Unternehmen können die immer größeren Datenmengen erschließen, analysieren und aufbereiten. Damit schaffen sie eine leistungsstarke Grundlage, um von hier aus weiteren Benutzergruppen innerhalb sowie außerhalb der eigenen Organisation einen sicheren Zugriff zu gewähren und neue handlungsrelevante Einblicke zu ermöglichen.
4. Ausbau von Embedded Analytics. Unternehmen werden die Vorteile von Embedded Analytics in allen Abteilungen auf breiterer Ebene nutzen – sowohl intern als Erweiterung der Transparenz von Geschäftsprozessen als auch als Möglichkeit, die Interaktionen mit Kunden, Lieferanten und Geschäftspartnern zu verbessern. Darüber hinaus wird sich der Einsatz von Embedded Analytics an der Konvergenz anderer Schlüsseltechnologien für Datenanalysen ausrichten, da mehr Unternehmen KI und Machine Learning einsetzen, um auf Basis einer fundierten Data Value Chain ihre Prozesse zu optimieren und effizienter zu steuern.
5. Verbesserter Datenschutz und höhere Datensicherheit. Die DSGVO war die erste von vielen Maßnahmen, um höhere Anforderungen an die Datensicherheit, den Datenschutz, die Speicherung und die Nutzung persönlicher und vertraulicher Daten umzusetzen. Regierungen und Unternehmen werden noch stärker als bislang gefordert sein, persönliche und vertrauliche Daten vor unbefugtem Zugriff zu schützen und zu definieren, was öffentlich zugänglich sein darf.
„Die zunehmende Menge und Komplexität der Daten kann auf den ersten Blick als Hindernis erscheinen, wenn Unternehmen mit Big-Data-Verfahren ihre Wertschöpfung steigern wollen. Zur Unterstützung bei der Auswertung und Aufbereitung benötigen sie innovative Datenmanagement- und Analytics-Lösungen“, sagt Peter Walker, Vice President EMEA North bei Information Builders. „Ergänzt um Methoden der Künstlichen Intelligenz, Machine Learning und Embedded Analytics sind Unternehmen damit in der Lage, neue Geschäftsfelder zu identifizieren und ihre Wettbewerbsfähigkeit zu steigern.“


Das könnte Sie auch interessieren